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ABSTRACT

The nonlinear Poisson-Boltzmann (PB) equation is
solved using Pseudo Transient Continuation. The PB
solver is constructed by modifying the nonlinear diffu-
sion module of a 3D, massively parallel, unstructured-
grid, finite element, radiation-hydrodynamics code. The
solver also computes the electrostatic energy and evalu-
ates the force on a user-specified contour. Either Dirich-
let or mixed boundary conditions are allowed. The lat-
ter specifies surface charges, approximates far-field con-
ditions, or linearizes conditions “regulating” the surface
charge. The code may be run in either Cartesian, cylin-
drical, or spherical coordinates. The potential and force
due to a conical probe interacting with a flat plate is
computed and the result compared with direct force
measurements by chemical force microscopy.

Keywords: Poisson-Boltzmann; chemical force micro-
scopy; pseudo transient continuation; finite elements

1 INTRODUCTION

We describe a numerical method to solve the non-
linear Poisson-Boltzmann (PB) equation and present a
few examples. Space limitations preclude presenting an
exhaustive list of applications of the PB equation. We
refer to Israelachvili [1] for a good introduction and to
Davis and McCammon [2], and Honig and Nicholls [3]
for excellent reviews.

Our PB solver stems from modifying the nonlinear
heat conduction (diffusion) module of the three dimen-
sional, massively parallel, radiation-hydrodynamic code
ICF3D [4] originally written to simulate inertial confine-
ment fusion experiments. Since ICF3D discretizes spa-
tial derivatives using the finite element method and is
specifically designed for running on unstructured grids,
it is uniquely suited for applications requiring high reso-
lution in limited parts of a large computational domain.
The code may be run in either Cartesian, cylindrical,
or spherical coordinates. The mesh consists of an arbi-
trary collection of tetrahedra, pyramids, prisms, and/or
hexahedra.

In the following we introduce three items pertaining
to the PB theory. First, is the equation itself. Next,

the related energy, and lastly, the force. Unless noted
otherwise, we use CGS units.

1.1 Poisson-Boltzmann Equation

The Poisson-Boltzmann (PB) equation for the elec-
trostatic potential V is

∇ · ε∇V + 4πρ = 0 , ρ = ρf + ρm(V ) . (1)

In (1), ε is the dimensionless permittivity, ρf is the fixed
(given) charge density, and ρm, a function of V , simu-
lates the mobile charge density in the solvent. If the
solvent contains N types of ions, of valence Zi, and of
bulk concentration ci (particles/cm3), then,

ρm(V ) =
N∑

i=1

ci Zi e exp(−Ziu) , u
.= eV/kT ,

where e is the elementary charge, k the Boltzmann con-
stant, and T the solvent temperature. For a symmetric
1-1 electrolyte, N = 2, ci = c0, and Zi = (−1)i yielding
ρm = −2 c0 e sinh(u) .

Boundary conditions for the PB equation are gener-
ally either of Dirichlet or of mixed type. For Dirichlet
conditions, V = Vb on the boundary where Vb is a given
function. The mixed condition is of the form,

V/d + ε ∂V/∂n = Ds , (2)

where d and Ds are prescribed on the boundary.
Equation (2) is very useful. Setting 1/d = Ds = 0

imposes symmetry. Setting 1/d = 0 simulates a surface
charge density σ = Ds/4π, while 1/d 6= 0 and Ds = 0
implies that V extrapolates to zero at a distance εd.
The latter choice is useful to approximate “far-field”
conditions. For example, setting 1/d = εκ and Ds = 0
simulates the desired exp(−κx) decay in slab geometry.
Lastly, if 1/d and Ds are both nonzero, the condition is
a linearization of the “surface charge regulation condi-
tion” occurring at charged surfaces [5].

The PB equation has one important parameter, the
Debye length κ−1. Far away from boundaries or fixed
charges, u � 1. In this limit, for an electrically neutral
solvent, i.e., if

∑
ci Zi = 0, 4π ρm → −εs κ2 V , where

εs is the solvent permittivity,

κ2 .= 4π(c0e
2/εskT )

N∑
i=1

(ci/c0)Z2
i , (3)



and where c0 is a reference concentration. For a sym-
metric 1-1 electrolyte, κ2 = 8πc0e

2/εskT .

1.2 The Energy Integral

It can be shown that V , the solution of the PB equa-
tion, is the function which minimizes a certain functional
here denoted as Wtot. In the literature, the energy inte-
gral Wtot appears in different forms (Sharp and Honig
[6], Overbeek [7]). Numerically, it is convenient to form
Wtot from the three quantities (Zhou [8], Micu et al [9]),

Wf = +(1/2)
∫

V ρf ,

Ws = −
∫

[∆Π + (1/2) V ρm ] , (4)

Wb = +(1/8π)
∮

V ε ∂V/∂n .

In (4), ∆Π denotes the excess osmotic pressure,

∆Π .= kT
N∑

i=1

ci [ exp(−Ziu)− 1 ] . (5)

There are seemingly contradictory expressions for Wtot.
For example, for a 1-1 symmetric solvent, if the im-
posed charges are small, so is u, and since Ws = O(u4),
it may be neglected in computing Wtot [9]. Further-
more, if in a problem ρf = 0 and only Dirichlet bound-
ary data is specified, then Wtot = −Wb. On the other
hand, if the problem only specifies a surface charge, then
Wtot = +Wb. This confusion is resolved by Shestakov et
al [10]. Briefly, the desired functional is problem depen-
dent and includes boundary conditions. If the problem
only contains Dirichlet data, Wtot = WV where

Wtot = WV
.= Wf + Ws −Wb .

However, if σ = σb is specified on the boundary, then

Wtot = WV +
∮

dA V σb .

1.3 Electrostatic Force

The force between objects may be computed from
the force density vector (Gilson et al [11]) which may
be shown to equal the divergence of the generalized
Maxwell stress tensor,

T =
ε

4π
( E : E− 1

2
E2 I )−∆Π I (6)

In (6), E2 denotes the Euclidean norm of the electric
field E (= −∇V ), (E : E) is the tensor with components
(−∂iV )(−∂jV ), I is the unit tensor, and ∆Π is given by
(5). Hence, the force F over a volume D reduces to an
integral over the enclosing surface ∂D,

F =
∫
D

(∇ ·T) d3x =
∮

∂D
T · dA . (7)

According to (5), ∆Π depends only on V , not on its
gradient. However, (6) and (7) show that F depends on
both V and its normal derivative at the surface. Specif-
ically, in a cylindrically symmetric problem, the axial
component of F on a flat plate located at Z = 0 is,

FZ = (εs/8π) [(∂ZV )2 − (∂RV )2]−∆Π . (8)

For an isolated plate, one for which FZ vanishes, (8)
shows that a (zero) force is due to a delicate balance
between V and its derivatives on the plate. In simu-
lations, this implies that if a boundary surface charge
(∝ ∂V/∂n) is specified and V is obtained by solving the
PB equation, a significant fictitious force may arise un-
less V is computed to a high accuracy. We return to
this point later, but at this time note that high surface
charges imply sharp gradients, which in turn requires
high accuracy of the boundary potential.

2 NUMERICAL METHOD

We now describe the algorithm use to solve (1); de-
tails are presented in [10]. Briefly, we solve the PB equa-
tion by combining Pseudo transient continuation with
Newton’s method. Each iteration leads to a SPD linear
system which is solved using ICCG. On parallel com-
puters, we use the ICCG variant described in [12].

However, since the solver is embedded in the code’s
heat conduction module, the scheme is better described
in the context of solving nonlinear diffusion equations.
By defining the nonlinear elliptic operator,

P(V ) .= ∇ · ε∇V + 4π [ ρf + ρm(V ) ] ,

and introducing the pseudo time variable t, we note that

∂V/∂t = P(V )

is a well posed parabolic equation whose steady state is
the desired solution of the PB equation. Thus, given ap-
propriate boundary conditions, an initial state V0, and
a time step ∆t we use backward Euler differencing to
(temporally) advance the solution,

(V − V0)/∆t = P(V ) (9)

where the rhs is linearized about the previous state,

P(V ) ≈ P(V0) +
dP
dV

∣∣∣∣
V =V0

(V − V0) . (10)

Equations (9) and (10) are discretized in space using
standard finite element techniques. Second order (spa-
tial) accuracy is guaranteed by giving the potential a
“linear” representation within each cell1.

1Within each cell, V has as many degrees of freedom as ver-
tices, i.e., V is indeed linear in a tetrahedron, but trilinear in a
hexahedron.



After each time step, we reset V0 = V and repeat
(9) and (10) until the desired steady state is reached.
Using dimensional analysis, one can estimate how long
(in pseudo time) it takes to reach the steady state [10].
It is easy to show that if ∆t→∞, (9) and (10) reduces
to Newton’s method. Thus, as the iterates converge, we
increase ∆t thereby recovering Newton’s second order
convergence. Initially, when we are far from the de-
sired root, ∆t is kept small and we rely on well-known
stability and robustness results of implicit differencing
of diffusion equations to ensure physically meaningful
iterates. For reasonable meshes, our finite element dis-
cretization when combined with lumping the lower order
terms leads to M-matrices. This guarantees that no new
extrema are introduced by the iterates [10].

3 RESULTS

By exploiting the code’s generality, we have solved a
variety of PB problems, linear and nonlinear, in diverse
geometries. In this section two illustrative examples are
presented. (See [10] for details and other examples.) We
compare the energy and potential of a charged sphere,
and compute the force due to the interaction between
a charged probe and a flat plate. The first simulation
uses spherical coordinates; the second, cylindrical.

3.1 The Spherical Charge

Assume that a spherical ion of radius a and charge q
is immersed in a symmetric 1-1 electrolyte characterized
by a Debye length κ−1. By Gauss’ law, exterior to the
ion, the potential is independent of how the (spherically
symmetric) charge is distributed. Thus, it suffices to
consider only the domain r ≥ a and on the surface of the
sphere impose (2) setting 1/d = 0 and Ds = −q/a2. (At
r = rmax, we also use (2) with 1/d = ε(1 + κrmax)/rmax

and Ds = 0.)
For the linearized PB equation (for which ρm ∝ V ),

the solution is well-known [2]:

V = q exp[−κ(r − a)]/[rεs(1 + κa)] , (11)
Wtot = +Wb = q2/[ 2aεs(1 + κa) ] .

However, if q is large (or a is small [10]), the potential of
the nonlinear PB equation is appreciably smaller than
that given by (11). This decrease carries over to the
energy Wtot. We substantiate the assertions in Fig. 1
in which we compare the boundary potentials and en-
ergies of the linear and nonlinear PB equations. Curve
A shows that when q = 10e, the nonlinear boundary
potential is less than half of its linear counterpart while
the energy (curve B) is reduced by nearly 40%. Curve
C reflects the size of the solvent contribution to Wtot;
when q = 10e, Ws accounts for nearly 25% of the energy.
(For the linear PB equation, Ws = 0. A fact evident by
noting that limq/e→0 (Wb/W ) = 1.)
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Figure 1: Comparison of linear and nonlinear results as a
function of ion charge q/e. Ion radius a = 3 Å, Debye length
κ−1 = 4 Å, and solvent permittivity εs = 78.5 Curve A is the
ratio of the linear and nonlinear potentials at r = a. Curve B
is the ratio of the linear and nonlinear energies Wtot/Wtot,`.
Curve C is the ratio Wb/Wtot.

3.2 Chemical Force Microscopy

We now compare experimental and computational
results that measure the interaction force between a
negatively charged probe and plate in an asymmetric
electrolyte. The experimental procedure closely follows
that of Vezenov et al [14]. Briefly, the surfaces of a
gold-coated AFM probe and gold-coated silicon wafers
were modified by coating them with monolayers of co-
valently bound 10-mercaptohexadecanoic acid (COOH).
The probe and sample were immersed in a phosphate
buffer solution of pH=8 and ionic strength 8.32 ·10−4 M.
When the probe and sample surfaces come in contact
with the buffer solution, some terminal acid groups of
self-assembled monolayers ionize, inducing a negative
surface charge. The interaction force was measured by
repeated approach-withdraw cycles. The resulting force
vs. distance curve is presented in Fig. 2. Fitting the
(experimental) force curve to an exponential function
yields a Debye length of 8.1 nm, which is in excellent
agreement with a calculated Debye length of 8.74266
nm; the latter obtained using (3), the electrolyte speci-
fication:

N = 4 , Zi = (−1, −2, −3, +1, ) ,

ci/c0 = ( 0.074595, 0.462668, 0.000023, 1.0 ) ,

and the above stated ionic strength.
The AFM probe consists of a square pyramid tipped

with a spherical cap. The pyramid’s half-angle is 35◦
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Figure 2: Chemical force microscopy, comparison of exper-
iment and simulations. Force (nN) vs. separation distance
(nm). Experimental results (solid line with error bars) was
obtained by averaging over 150 separate approach-retreat
cycles. Each simulation (designated by a symbol) is a sepa-
rate solution of the PB equation for a particular separation
distance and imposed surface charge density. The best agree-
ment, obtained for σ/σ0 = 0.5, implies that only half of the
surface groups ionize.

and the cap’s radius rp ≈ 70 nm; the latter obtained by
electron microscopy imaging. Since there is uncertainty
in the magnitude of rp, in the surface charges (see be-
low), and in the experimental force measurement itself,
we simplify the problem by assuming azimuthal symme-
try and simulate the probe as a cone with a half angle
θp = 38.31◦, a value which yields the same volume.

The critical parameter is the surface charge density.
In the experiment, the plate and probe are coated with
COOH sites whose areal number density is 1/.2 nm2.
Thus, if all the surface groups were to ionize when the
probe and plate are immersed in the electrolyte, the
resulting charge density would be,

σ0 = −e/0.2 nm2 . (12)

However, the ionization of the surface groups depends on
many factors. Thus, the surfaces only partially ionize.
The true charge density σ is not exactly known and the
value σ0 is only an upper bound.

Because of these uncertainties, our approach is to
compute the force for a series of gap distances Dgap and
several surface charge densities,

σ/σ0 = 0.1, 0.2, 0.4, 0.5, 0.6, 0.8 (13)

and determine which simulation agrees with the exper-
iment. That is, we make several calculations in which
we impose

εs ∂V/∂n = 4πσ (14)

on both the probe and the plate where σ and σ0 are
given by (13) and (12) resp.

Before discussing the probe/plate interaction, we ex-
amine what happens if only the plate is immersed, or
equivalently if the probe and plate lie far apart. In
this regime, at the plate, we have a generalized Gouy-
Chapman problem. (For the case of a 1-1 symmetric
electrolyte, the analytic solution exists – see [1], [13], or
[10].) For the experimental electrolyte and a choice for
σ, the value of the boundary potential ũb is found by
substituting (14) into (8), ignoring ∂RV and setting the
result to zero. That is, an isolated plate should feel no
force. This exercise illustrates the extreme nonlinearity
of the problem. Using σ/σ0 = 0.4 yields ũb = 10.48, a
value nearly 15 times less than the corresponding linear
result, ũb,` = 147.1. For reference, eV/kT = 10 trans-
lates to V ≈ 8.9 · 10−4 statvolt or 0.27 volt.

The nonlinearity requires high accuracy; especially
at the plate surface. As mentioned above, the isolated
plate feels no force only if the (computed) ub is exact.
To illustrate, we computed ub for a generalized Gouy-
Chapman problem with similar, but less nonlinear pa-
rameter settings [10] and found that if using a uniform
mesh, we obtain second order convergence of ub only
with 80 cells per Debye length. Furthermore, over 1000
mesh points per Debye length are needed to just get
4 accurate decimal digits.2 Such high resolution is, of
course, unrealistic, especially in 2 or 3D runs and un-
derscores the efficiency availed with finite elements (FE)
since with FE one may adjust the mesh width to resolve
large gradient regions.

The simulations require great care because of the
high surface charges. If the resolution near the charged
surfaces is inadequate, then an erroneous V (typically
of lower magnitude) is calculated. If one simulates a
configuration when the gap distance Dgap between the
probe and plate is large, say 8 κ−1, V is slightly less
(in magnitude) than the exact value. If this (too low)
value is then substituted into (8), FZ turns out positive
and if the expression is integrated over the plate, the re-
sult is an erroneous, positive force implying attraction.
However, on physical grounds when Dgap ≥ 8 κ−1, the
force should decay to nearly zero due to the shielding.
We resolve the difficulty by considering it a matter of
calibration. For a given σ, we compute the force at sev-
eral separations Dgap and declare that the true force is
a difference between what we calculate and the “force”
when Dgap = 8κ−1 – see [10] for details.

For the simulations we typically use 240 radial cells
and 480 axial cells. In the radial direction, the mesh
is uniform; in the axial direction, it conforms to the
boundary. At the boundaries, the axial mesh width
hz = O(10−5) κ−1. Results appear in Fig. 2 in which
we plot the simulated force vs. distance for a number of
imposed charge densities σ. We find the best agreement

2The chemical force microscopy simulations do indeed require
such accuracy – see [10].



for σ/σ0 ≈ 0.5 − 0.6 implying that approximately half
of the COOH groups ionize in the electrolyte.

4 SUMMARY

We have presented a numerical method to solve the
nonlinear PB equation and showed its performance on
two problems. Additional details and examples appear
in [10]. The algorithm combines Pseudo transient con-
tinuation with Newton’s method. The combination has
distinct analogies with the solution of nonlinear diffusion
equations. Indeed, its robustness and stability is a di-
rect carry-over from the latter. The solver is embedded
in the diffusion module of a multiphysics finite element
code. Problems may be run in any of three coordinate
systems and the grids can be adaptive. In fact, for more
complicated PB problems, we foresee only two difficul-
ties: mesh generation and, for very nonlinear problems,
a demand for high accuracy. The former is outside the
scope of this paper; entire papers, in fact separate com-
panies, are devoted to generating grids. Meshes are in-
put to our code in the (very general) AVS unstructured
grid format. The second difficulty points to the direc-
tion of future work, viz., use higher order methods for
the spatial discretization. That is, within each cell (el-
ement) represent the unknown function by higher order
interpolation functions.
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